
PETS Perspective on PDE Solving

Portable Extensible Toolkit for Scientific computing

Solving generic PDEs can be broken down into a series of steps
O Define continuous problem domain BCS etc iontinuous PDE

l Discretize the domain system of ODE
2 Solve ODEs using time integrators system of nonlinearequs
3 Solve nonlinear equations system of linear equs

t

4 Precondition the linear system preconditioned
d

5 Solve preconditioned linear system

PETS has capabilities tohandle all of this for its users Each step
has a different module object associated with it

1 Discretization DM
2 Time stepping TS

3 Nonlinear solver SNES solvers

4 Preconditioning PL
5 Linear Equation KSP

PETS DM

Handles the connection between a discretization and PETSs Solvers

Specifically it handles
Global A local data communication

Boundary condition removal fromsystem liestrongBcs

Vector index ordering

Geometric multigrid

other discretization specific tasks interpolation graphcoloring etc



PETS Solvers

The libCEEFluids code uses the full Solverstack As such the primary
interface between libLEED and PETS is through the TS module

The TS module solvesproblem of theform

Fltmud Hftal ulx.to uo

Users provide functions to evaluate F andor H and PETS calls them

when necessary

Fltand is the IFunction

itt.nl is the RHSFunction

For explicit methods we assume F be and only It is provided
For implicit methods F must be given and It is optional

To solve nonlinear equation PETS requires the Jacobian of F aka the tangentmatrix
It requires the form

dat Fatt u udo t felt.net

The Jacobian ofF is stored as PETS Mat object which is created

by a function IJacobian

IFunction RHSFunction IJacobian constitute theprimary interface between
LibLEED and PETS

We use LeedOperators to perform the functions

Matrix Free Jacobian

libCEED Fluids can use a matrixfree approach to evaluate Jacobianmatrecs

But different from PHASTAmethod

E
z 6MtEx 614FDMF Ig 61ktEx 6147

E



JY EE E

libLEED uses the total derivative of the residual combined storing
intermediate data from residual calculation to compute exact Jacobian matvec

Remember Total Derivative is the change ofinputs contracted with the Jacobian

i Jacobian matvec totalderivative

when the change of inputs is the vector tobe multiplied by the Jacobian

611 I.tl dbl't It d't d'tt 6,411,4e d't t Ge t.Y.tl II t

Ignoring stabilization Gy t and without loss of accuracy express
dk.ttod

We endupwith

461kd4 G 1 d t idk

We store I and other intermediate values to accelerate Jacobian calculation

db is calculated without forming big

Comparison FDMF Total derivative ME

cheap bitten pretty cheap 1 614
No Jacobian code Require calculating andcoding Jacobins

Approximate Jacobian Exact Jacobian


